
Australian Educational Computing, 2018, 33(1)

Development of Students’ Programming Abilities

with the Means of Non-Programming Disciplines

and Activities

Razakh Sakibayev, Spartak Sakibayev, and Bela Sakibayeva

Zhetysu State University, Kazakhstan

Abstract

The article contains the results of the study conducted in order to discover

the most effective ways of developing students’ programming abilities with

the means of non-programming disciplines and activities. The authors

observe the learning practices and habits employed by students with highly

developed programming abilities and compare these practices and habits

with those employed by students with poor academic performance at

programming lessons. Then they use the results of the observation to

formulate theoretical and educational principles that can be applied to

programming instruction for effective development of programming abilities.

The authors have discovered the factors that have the most significant impact

on developing students’ programming abilities. The article describes

interdisciplinary connections existing between computer programming,

writing scientific essays, reading scientific texts and solving chess problems

that have not been fully covered so far in scientific journals. Also, it specifies

which type of mathematical problems is especially useful in developing

students’ programming abilities.

Keywords

programming abilities; mathematical abilities; interdisciplinary connections of computer

programming; impact of chess programming abilities; innovations in computer programming

teaching; spaced learning

Australian Educational Computing, 2018, 33(1)

Introduction

Development of computer programming abilities in students plays an important role in their

academic achievements. Not only these abilities can be vital for students’ academic success in

the specific field of computer programming. They are also the powerful means for preparing

students for academic success in other subjects as well. Computer programming is an effective

vehicle for developing mathematical thinking and abilities. Programming abilities can be easily

transferred to performing mathematical tasks. According to Owolabi, Olanipekun, and Iwerima

(2014), there is a strong correlation between mathematical and programming abilities.

Programming also develops student’s thinking abilities, problem-solving and complex

cognitive skills.

Despite the importance of computer programming as an academic discipline, its methodology

as currently employed by the majority of high schools and universities is still far from being

optimal and effective. This situation is mainly caused by teachers paying more attention to

providing concrete computer-related knowledge and facts rather than developing general

algorithmic and programming abilities and skills. And even if they dedicate time to developing

programming abilities in students, they try to accomplish this task remaining within the

confines of the programming discipline itself. That is, they try to develop these abilities

exclusively using programming. Besides, the majority of programming teachers still use old-

fashioned teaching methods which are unable to fulfil the students’ potential completely.

So far there has not been a sufficient number of articles and studies dedicated to the problems

mentioned in the previous paragraph. Such a situation has served as the main motivational

factor behind this article. The authors are convinced that in the educational context the

questions of developing programming abilities must be given a priority and that these abilities

are most effectively developed only through the means of non-programming disciplines and

activities. Also, they believe that the introduction of new teaching methods, such as so-termed

“spaced learning”, is a necessity for the effective organization of the educational process of

computer programming lessons.

In this article, the authors present the results of their study of the issues concerning the

development of students’ computer programming abilities with the means of non-programming

disciplines and activities, such as mathematics, science, writing and chess. The authors argue

that programming abilities are best developed namely through these disciplines and activities.

The main goal of the study was to discover the factors which have the most significant impact

on developing students’ programming abilities and then formulate hypotheses to serve as the

theoretical foundation for the discovered factors. The authors also mention the usage of a

learning method termed “Spaced learning” as an effective optional instructional method which

can also have a significant positive impact on students’ abilities. The theoretical principles

formulated by the authors are substantiated with statistical data obtained during the

experimental verification of the formulated hypotheses.

Literature Review

The problem of effective development of analytical and logical skills and abilities, which lay

the foundation for programming skills and abilities to be based on, has always been the focus

of a vast amount of researches carried out by educators and computer scientists around the

world. These researches cover both the questions of analytical thinking developed by specific

Australian Educational Computing, 2018, 33(1)

academic disciplines and the relationships existing between the forms of thinking developed

by various academic disciplines and activities.

Thus, Balmes (2017) covers the existing connections between mathematical and programming

thinking and the impact which one type of thinking has on another. White and Sivitanides

(2015) cover the results of their practical experiments dedicated to estimating the level of

correlation between mathematical and general programming abilities and skills. Duran (2016)

verifies his hypothesis about the positive impact of mathematical background on students’

academic performance in computer programming. All these authors argue that mathematical

activities, in general, have a positive impact on students’ programming abilities. In this sense,

their conclusions coincide with those given in the present article. But they do not specify which

branches of mathematics and types of mathematical problems are especially useful in

developing programming abilities. Also, they do not mention the importance of recreational

mathematics in developing algorithmic skills. The present article fills up these gaps in the

aforementioned papers and additionally provide more details on why mathematics is useful for

developing programming abilities.

Maula (2015) discusses the correlation between students’ reading and writing habits. Some of

her results were used by the authors of the present article to formulate the hypothesis of their

research. But Maula discusses the topic from the general point of view and does not cover the

questions of the impact which reading and writing have on the development of logical thinking.

On the contrary, the present article puts an emphasis on one specific kind of reading and

writing, namely scientific reading and writing and analyzes the positive effect that they have

on developing logical and, therefore, programming skills.

The works by Rosholm , Bjørnskov and Gumede (2017), Bart (2014), Sala and Gobet (2016),

Trinchero and Sala (2016) and Gliga and Flesner (2013) are dedicated to the problems of

estimating the level of relationship between chess studies and mathematical abilities. Also, their

works deal with the impact which participation in chess has on the overall academic

performance of students. However, they do not discuss the existing connections between chess

and programming and the impact which chess thinking has on algorithmic abilities. These

authors suggest that chess may be helpful in forming some particular educational traits, such

as logical and analytical thinking and memory, but they have not discovered any direct way in

which it affects the academic performance of students in mathematics. Unlike these works, the

present article covers the specific questions of the relationship between chess and programming

and argues that participation in chess directly and positively affects the development of

mathematical and, therefore, programming abilities.

Seibel in (2009) presents interviews with prominent computer scientists and programmers. The

book is not a scientific monograph but yet provides useful methodological insight into the

internal intricacies of the profession, and advice on how to develop various skills and abilities

necessary for success in computer programming. The present article contains attempts to build

a formal theoretical foundation for some of the methodological advice given in (Ibidem).

The original study by Douglas Fields (2005) led to the formation of the “spaced learning”

teaching method recommended by the present article for use in programming classes. It covers

the general pedagogical and psychological factors which make the method an effective

educational tool. However, Fields (Ibidem) does not discuss the specifics of applying this

method to any particular academic discipline. In the present article, the authors demonstrate

Australian Educational Computing, 2018, 33(1)

how “spaced learning” can be applied to programming lessons in particular and discuss the

benefits it can bring to programming education.

Materials and Methods

The research whose results are presented in this article was organized to have three major

stages. At the first stage, the authors selected a target group of the study to be served as the

source from which to collect experimental data for the research. The second stage was

dedicated to collecting the experimental data from the target group. Finally, at the last third

stage, the authors were engaged in building the theoretical foundation for the collected data

and formulating the hypothesis of the research.

The target group of the study consisted of students from a local college studying in the same

group and, therefore, having the same lesson schedule. All students from the target group spent

an equal amount of time on both educational and leisure activities and came from the families

with an equal level of income. The study’s target group included both students with a high level

of development of programming abilities and students, which had previously demonstrated a

poor or average academic performance at computer programming lessons.

The initial phase at the stage of collecting the experimental data started with the authors

accumulating all necessary and relevant information about the learning practices, habits and

extracurricular interests and activities of the students with highly developed programming

abilities and skills. The main method of collecting data at this initial phase was conducting

interviews with academically successful students, their classmates and teachers and members

of their families. After that, the authors applied the same procedure to obtain similar

information concerning students with poor academic performance in programming lessons.

The next phase at the stage of collecting the experimental data was dedicated to making the

students with poor academic performance in programming to employ the learning practices

and habits used by the students with highly-developed programming abilities. At the same time,

programming teachers were asked to apply the elements of the “spaced learning” method in

their lessons. The authors observed the students’ academic progress under the new learning

strategy by keeping track of their scores.

At the third stage, the present study’s authors formulated a series of hypotheses to cover the

obtained experimental data. The hypotheses were to serve as methodological and pedagogical

principles targeted at transformation and improvement of existing computer programming

learning process in educational institutions and effective development of students’ cognitive

abilities in general, and programming abilities in particular. Since colleges around the world,

on the whole, follow the same educational standards and instruction strategies the results and

observations obtained from the local study group could be extrapolated to colleges in other

regions as well.

Results

During the study, the authors tested their own methodological views on the development of

programming abilities as well as analyzed existing learning practices and habits employed by

students from the study’s target group demonstrating a high level of these abilities. Also, the

authors studied statistical data (Table 2) on the academic performance of the students with poor

Australian Educational Computing, 2018, 33(1)

or average academic performance in programming from the target group. Analysis of the

obtained data allowed the authors to formulate five hypotheses which are given below.

Hypothesis 1 (H1): Solving mathematical problems is the most effective way of developing

programming abilities. By solving a problem, the authors mean solving them in a traditional

way without using a computer. The discipline of computer programming has mathematical

foundations. It has originated as part of applied mathematics the process of writing source code

is very similar to the process of proving a theorem. Operators and expressions in source code

are mathematical formulae used to implement a mathematical algorithm, and the

implementation of this mathematical algorithm requires mathematical ability, skills and

knowledge. The most effective way of developing these traits in students is through solving

mathematical problems and performing mathematical manipulations. It is necessary to

highlight that the most important result of solving mathematical problems for programming

students is not some new mathematical knowledge gained during the solution process but the

process itself which develops mathematical and, therefore, programming thinking.

However, not all types of mathematical problems are suitable for the development of

programming abilities. One example of such problems is geometrical problems which require

and develop spatial imagination and synthetic reasoning. Though these traits are very useful in

the overall formation of students’ mathematical thinking and discipline, their specifics do not

match the specifics of programming reasoning. From the point of view of the specifics of

programming thinking the most effective problems for developing programming abilities are

those taken from the fields of combinatorial mathematics, algebra and number theory. The

problems from these mathematical fields have a “discrete” nature and imply following some

discrete formal algorithms which make them an optimal choice for developing programming

abilities. For example, programming students could be asked to use Horner’s method to solve

without writing a program an algebraic system of linear equations or try to simplify some

complex and lengthy algebraic expression. Another good mathematical problem is to test a

number for primality using Fermat’s methods available in the course of elementary number

theory.

Taking part in various mathematical recreational tasks as an addition to solving mathematical

problems is also an effective method of developing programming abilities in students. For

example, a programming teacher can dedicate five minutes of a lesson to students’

mathematical “warm-up” in the form of performing simple mental binary arithmetical

calculations. This activity develops memory and teaches students to emulate the “machine

thinking”. Another useful example is to introduce numerical games where a student is given a

task is to encode or decode some text-based message using the means of binary arithmetic.

It is almost impossible to develop students’ programming abilities without simultaneously

developing their mathematical abilities as well. In this sense, mathematics presents the most

important interdisciplinary prerequisite for computer programming. Computer programming

skills cannot be further developed if a student does not demonstrate even the most essential

mathematical reasoning and problem-solving skills. It becomes very difficult to have

academically successful programming classrooms in a school or university where the level of

efficiency and organization of mathematics instruction does not meet any plausible standard.

So-termed math anxiety also serves as an obstacle for students in developing their

programming abilities. On the contrary, the majority of students with a high level of

programming abilities demonstrates an interest and inclination towards mathematical activities,

for example performing complex mathematical manipulations and solving various

Australian Educational Computing, 2018, 33(1)

mathematical problems. Moreover, they tend to view computer programming as a natural

continuation of their math lessons and consequently dedicate a significant amount of time to

both disciplines. It becomes possible to suggest that programming abilities can be developed

even more effectively using means of mathematics rather than programming itself. Butler

Lampson said in [8] that “...physics and mathematics, like other respectable disciplines, require

that you think clearly to succeed in them. That is why many successful computer people come

from these fields.”

Hypothesis 2 (H2): interest in science is another prerequisite for the effective development of

programming abilities in students. Reading science textbooks and doing problems from them

require logical and analytic reasoning, insight into the essence and structure of things and

understanding the cause and effect relationships. All these traits have a mathematical nature

and therefore, as is shown in H1, have a direct impact on developing programming abilities.

Scientific textbooks provide students with details and knowledge concerning the technical and

physical underpinnings, and principles of computer science and this knowledge enable them to

make optimal choices in the process of writing source code of their computer programs.

Reading scientific textbooks allows to get acquainted with the procedure and psychology of

scientific discoveries and, therefore, the basics of the scientific method in general. Students

learn about the effective and working approaches and optimal strategies and methodologies

employed by scientists in dealing with various scientific and technical problems. Then they

learn how to effectively apply these approaches and strategies and methodologies in their

studies in order to improve their academic performance in various disciplines, including

computer programming. Bill Gates, the founder of Microsoft software company admitted in

[9] that in his youth he was influenced by popular scientific lectures delivered by Richard

Feynman, an American theoretical physicist and Nobel Prize winner.

Students with high scores in computer programming lessons from the study’s target group

demonstrated a significant level of interest in watching popular science video and reading

popular science articles taken both from printed books and the Internet.

Hypothesis 3 (H3): Reading material on the history of computer technologies is important for

developing programming abilities. Interest in the historical and evolutional aspects of computer

technologies demonstrates student’s inclination towards extending and furthering his current

level of knowledge on the subject. In the process of reading students get acquainted with the

problems standing before computer scientists and technologists at some period of time,

methods and approaches used for solving these problems, and motivation and reasons behind

technological decisions made. This new knowledge is helpful in developing student’s

programming abilities.

Students with highly developed programming abilities from the study’s target group dedicated

a significant amount of the extracurricular time to reading articles and watching documentaries

on various topics from the history of computer technologies.

Hypothesis 4 (H4): Solving chess problems and studies as an extracurricular activity helps

developing students’ programming abilities. Chess provides an optimal platform for testing

various mathematical, data search, data analysis and decision-making algorithms. The game

requires and develops essential combinatorial, analytic and manipulative skills which relate it

to mathematics, and therefore, as is suggested by H1, computer programming. Solving a chess

problem has a lot in common with constructing an algorithm for implementing a computer

program. Both activities require a detailed analysis of available source data, a clear

Australian Educational Computing, 2018, 33(1)

understanding of the end solution, seeing a relationship between source data and the solution

and skills in constructing a concise algorithm of the solution. Chess problems teach

programming students to evaluate available material, and this is an essential programming

technique used in solving many programming problems. Also, chess problems develop other

traits necessary for accomplishing programming tasks, such as concentration and mental

discipline. Rosholm, Bjørnskov and Mikkelsen (2017) suggest the domains of chess and

mathematics are contextually close to each other. Bart (2014) argues that to understand and

evaluate chess positions, you must take into account the different mobility patterns of the

pieces, requiring fluid intelligence and concentration capacity. Sala and Gobet (2016) argue

that chess-related abilities and skills can be effectively used to develop abilities and skills in

academic disciplines as well. Trinchero and Sala (2016) demonstrates that chess can be used

as effective tools for developing mathematical problem-solving skills. Also, Gliga and Flesner

(2013) demonstrate the positive impact that chess training has on school performance, memory,

sustained attention and creativity.

From the point of view of developing programming abilities, the most educational value comes

from solving those chess problems which require selecting the most optimal and effective

solution from a large number of existing ones. A student’s programming ability will be

developed effectively by their attempts to construct a compact and efficient chess plan for

analysis of a big number of variations, testing their consequences, evaluating their effectiveness

and in the end selecting the best move.

Majority of students with highly developed programming abilities from the study’s target group

participated in chess clubs in their extracurricular activities.

Hypothesis 5 (H5): Writing small essays on scientific topics is useful for developing

programming abilities. On the whole, writing prose is a process which by its structure and logic

resembles the process of writing source code for a computer program. Both writing and

computer programming are based on pattern recognition and involve strategic planning. Both

activities imply the search for the most optimal and compact arrangement of given expressions

with the purpose of describing some idea in the clearest and understandable form. In this sense,

scientific writing is the type of writing which bears the closest resemblance to the process of

computer programming. Writing an essay on a scientific topic requires an accurate description

of some complicated scientific phenomena and presentation of material in the most compact

form. And this is very similar to trying to implement a complex algorithm using as few lines

of source code as possible. Jamie Zawinski states that there is an overlap between programming

and writing prose (Seibel, 2009: 26).

Majority of students with highly developed programming abilities from the study’s target group

demonstrated skills in writing academic essays on scientific topics.

In addition to these five hypotheses, which, in the authors’ opinion, cover the main factors

affecting the development of programming abilities in students, the study has also discovered

an optional condition which can have a positive impact on academic achievements in the field

of computer programming. The condition is to employ the method of so-termed “spaced

learning” at computer programming lessons. According to this method, learning content is to

be repeated three times with two short breaks between repetitions. During these short breaks,

students are made to perform some other activities called distractor activities (Fields, 2005).

Spaced learning allows teachers to organize the presentation of programming material in the

most effective way of using long-term memory creations and thus, affects the development of

Australian Educational Computing, 2018, 33(1)

programming abilities using the principles of neuroscience. Specifically to a computer

programming lesson this learning method can be applied the following way. A teacher starts

the lesson by presenting a learning content in a textual form, without using specialized

programming and mathematical symbols. Then after the first short break, he presents the same

learning content using some non-textual means, for example, visual means in the form of

sequence diagrams. After the next short break, the teacher starts presenting the same learning

content using the concrete means of a specific programming language. This methodology

protects students from experiencing fatigue and loss of concentration. What is more important

is that this method of “spaced learning” allows for making computer programming lessons

more attractive to students.

Practical experiments in computer programming lessons performed at the stage of the

verification of the formulated principles demonstrate the general correctness of the obtained

hypothesis.

Though it is necessary to notice that the first positive educational results appeared

approximately one month since the authors introduced their hypotheses with experimental

purposes to programming instruction of students from the study’s target group. The

experimental verification of the hypotheses was held in a local college which follows the

standardized credit system with a 15-week semester and uses the grading system shown in

Table 1.

Table 1. Grading system used in a local college from the target group

Letters Range Percentage Description of the grade

A 4.0 95–100 Excellent

A− 3.67 90–94 Excellent

B+ 3.33 85–89 Good

B 3.0 80–84 Good

B− 2.67 75–79 Good

C+ 2.33 70–74 Satisfactory

C 2.0 65–69 Satisfactory

C− 1.67 60–64 Satisfactory

D+ 1.33 55–59 Satisfactory

D 1.0 50–54 Satisfactory

F 0 0–49 Unsatisfactory

The experimental group consisted of 8 students with a previous average academic performance

at computer programming lessons graded as “C-” (Satisfactory). The stage of the experimental

verification of the hypothesis in programming lessons started at week 6 of an academic year

and finished at week 14 of the same academic year. The authors studied the progress in the

academic performance of the students during the experiment by tracking their grades which

were given according to the system shown in Table 1. The results of the students’ academic

performance during the experiment are given in Table 2.

 Table2. The students’ academic performance during the experiment

Week No Student 1 Student 2 Student 3 Student 4 Student 5 Student 6 Student 7 Student 8

6 C- C- C- C- C- C- C- C-

7 C- C C C+ C+ C- C C+

Australian Educational Computing, 2018, 33(1)

8 C- C C C C C- C C+

9 C- C C+ C+ C+ C C C

10 B B- B- B C+ C B+ B

11 B+ B B- B C+ C+ B+ B-

12 B+ B+ B+ B B- B- B C+

13 B+ A- B+ B- B B B- B

14 A- A- B+ B A- A B B+

As is shown in Table 2 approximately one month after the experiment started the students’

academic performance in computer programming lessons showed the first signs of

improvement. Starting from week 10 the academic performance of the target group increased

significantly, and at the end of the semester, half of the students were given the “A” or ”A-”

(Excellent) grades. Moreover, in tandem with the improvement of academic performance at

computer programming lessons, the students from the target group also saw a similar increase

in academic performance in other disciplines as well, such as mathematical and physical

sciences. Additionally, the students from the study’s target group reported experiencing the

increased level of interest and motivation towards computer programming lessons in particular

and the whole academic process in general.

“Spaced learning” when applied specifically to computer programing education is an effective

method for increasing the educational value of lessons. Repetition of a learning content several

times using a different form of presentation on each repetition enables students to absorb it

using the minimal amount of effort.

Discussion

Finding effective educational means for the development of students’ programming abilities

has been one of the central points of research on computer science educators. The majority of

the research so far has been focused on developing programming abilities with the content of

the programming lessons themselves. The authors of this article, however, argue that the most

effective way of developing such abilities is through the means of non-programming

disciplines and activities, such as mathematics, science, chess and writing.

It has been the opinion of many educators and scientists that the study of mathematics directly

influences a student’s interest and academic performance in computer programming. However,

their works only state the existence of a general correlation between mathematics and computer

programming without specifying which particular areas of mathematical science and types of

mathematical problems are useful for developing programming abilities. The present article

seeks to address these shortcomings and provide the necessary details about these particular

areas and problem types.

The authors do not agree with the results of existing research which state that there is no direct

relationship between participation in chess and mathematical and, therefore, computer

programming academic performance. On the contrary, the article concludes that chess can be

used as an effective educational tool for enhancing programming abilities in students.

Another topic considered in the present article and not yet enough covered in scientific

literature is relationships existing between computer programming and such non-programming

activities as reading popular scientific articles and writing scientific essays. The authors argue

Australian Educational Computing, 2018, 33(1)

that these activities bear a lot in common with programming and can effectively stimulate the

development of students’ programming skills. Also, the authors discuss another rare topic of

modern researches – the application of the “spaced learning” method specifically for computer

programming lessons.

The majority of modern research dedicated to computer programming education tend to focus

more on the problems of introducing the latest technological achievements (such as interactive

smart boards, smartphones and tablet PCs) to the educational process rather than the questions

of effective development of students’ algorithmic thinking and skills. The authors of the present

article, however, put an emphasis on algorithmic thinking and skills as the main target of

computer science education.

Conclusion

The research conducted by the authors confirm the opinion of many educators, computer

scientists and psychologists that computer programming abilities can be effectively developed

through the means of non-programming activities such as mathematics, science, chess

problems and writing. Moreover, the authors argue that the former activities provide much

more efficient means for the effective development of programming abilities than the discipline

of programming itself. The theoretical principles proposed in the article, when applied to the

instruction process, enable students to develop not only their programming skills and abilities,

but also can improve their overall academic achievements, logical and analytic thinking,

memory and cognitive abilities.

Computer programming lessons, and therefore, the process of development of students’

programming abilities are most effective when they are held as part of a learning method

termed “spaced learning”. This methodology provides the most effective means for absorption

of learning content and, thus, is an efficient mechanism for developing learner’s memory and

abilities.

The methodological strategies proposed by this article can be used for effective organization

of computer programming lessons in high schools and initial courses of universities. Also, the

methodology can be applied by teachers of mathematical and physical sciences as a general-

purpose educational tool for increasing students’ academic performance, skills and motivation.

The main limitation of the results obtained in the present article is that they are oriented

exclusively towards developing analytical and logical sides of thinking. However, it is often

the case when a computer programmer faces a problem whose solution requires spatial

imagination and synthetic skills. The question of the development of such synthetic skills lies

beyond the scope of this article.

Computer programming, as any other academic discipline, cannot evolve without close

interdisciplinary connections. And often it is the theoretical and practical advances in other

scientific disciplines that make it possible the progress in computer programming instruction

methods.

Acknowledgement

The authors wish to express acknowledgement to Ing. Miloš Ulman, PhD, from the Prague

Agrotechnical University for his seminars and lectures, which provided methodological ideas

for the present article.

Australian Educational Computing, 2018, 33(1)

References

Ali, P, Ali, S., Farag, W. (2014) An instrument to measure math attitudes of computer science

students. International Journal of Information and Education Technology, 4(5): 459-

462.

Balmes, I. L. (2017) Correlation of mathematical ability and programming ability of the

computer science students. Asia Pacific Journal of Education, Arts and Sciences,

4(3): 82-88.

Bart, W. (2014) On the effects of chess training on scholastic achievement. Frontiers in

Psychology, 5: 762. doi: 10.3389/fpsyg.2014.00762.

Brookshire, R., Crews, T., Brown, III H. (2009) Student success in a university introductory

networks and telecommunications course: contributing factors. International Journal

of Information and Communication Technology Education, 5(1): 53-61.

Duran, I. L. (2016) The role of mathematics background in the performance of bscs students

in computer programming subject. International Journal of Multidisciplinary

Research and Modern Education (IJMRME), 2(1): 147-150.

Fields, R. D. (2005). Making Memories Stick. Scientific American, 292(2): 58–63.

Gliga, F., Flesner, P. I. (2013) Cognitive benefits of chess training in novice children.

Procedia - Social and Behavioral Sciences, 116(21): 962-967.

Lammers, S. (Eds.). (1986) Programmers at work. Redmond, WA: Microsoft Press.

Markoff, J. (2009) Gates puts Feynman lectures online. Retrieved from

https://tierneylab.blogs.nytimes.com/2009/07/15/gates-puts-feynman-lectures-online/

Maula, I. (2015) The correlation between students' reading habit and their ability of writing

narrative text (a correlational study on the eleventh graders of SMAN 1 Kajen

Pekalongan in the academic year of 2014/2015), doctoral dissertation, Universitas

Negeri Semarang, Semarang, Indonesia.

Owolabi, J., Olanipekun, P., Iwerima, J. (2014) Mathematics ability and anxiety, computer

and programming anxieties, age and gender as determinants of achievement in basic

programming. GSTF International Journal on Computing (JoC), 3(4):109-113.

Rosholm, M., Bjørnskov, M., Mikkelsen, K. (2017) Your move: the effect of chess on

mathematics test scores. PLoS ONE, 12(5): e0177257. doi:

10.1371/journal.pone.0177257

Sala, G., Gobet, F. (2016) Do the benefits of chess instruction transfer to academic and

cognitive skills? A meta-analysis. Educational Research Review, 18: 46–57.

Seibel, P. (2009) Coders at Work: Reflections on the Craft of Programming. New York, NY:

Apress.

https://tierneylab.blogs.nytimes.com/2009/07/15/gates-puts-feynman-lectures-online/

Australian Educational Computing, 2018, 33(1)

Trinchero, R., Sala, G. (2016) Chess Training and Mathematical Problem-Solving: The Role

of Teaching Heuristics in Transfer of Learning. Eurasia Journal of

Mathematics, Science & Technology Education, 12(3): 655–668.

White, G., Sivitanides, M. (2015) An empirical investigation of the relationship between

success in mathematics and visual programming courses. Journal of Information

System Education, 14(4): 409-416.

